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Abstract: We construct various new BPS states of D-branes preserving 8 supersymme-

tries. These include super Jackstraws (a bunch of scattered D- or (p, q)-strings preserving

supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic

angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scat-

tered in various dimensions but are dynamical with all their intersections following a com-

mon null direction. Meanwhile, super (p, q)-Jackstraws form a planar static configuration.

We show that the SO(2) subgroup of SL(2, R), the group of classical S-duality transforma-

tions in IIB theory, can be used to generate this latter configuration of variously charged

(p, q)-strings intersecting at various angles. The waterwheel configuration of D2-branes

preserves 8 supersymmetries as long as the ‘critical’ Born-Infeld electric fields are along

the common direction.

Keywords: Intersecting branes models, Supersymmetry and Duality, D-branes.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep012007095/jhep012007095.pdf

mailto:cho.jinho@gmail.com
http://jhep.sissa.it/stdsearch


J
H
E
P
0
1
(
2
0
0
7
)
0
9
5

Contents

1. Introduction and summary 1

2. Gauged D-strings as a (p, q)-string 3

3. Intersecting D-strings in motion 4

4. Three D-strings 6

5. Two D-strings moving in different planes 7

6. Supersymmetric D-jackstraws 9

7. Super waterwheels 12

8. Supersymmetric (p, q)-jackstraws 14

9. Discussions 16

A. Static Intersecting D-strings 18

A.1 Supercharges in the presence of D-branes 18

A.2 S-representation for the spinors 18

A.3 Solving the eigen-spinor equation 19

1. Introduction and summary

Static D-strings intersecting at general angles do not preserve any supersymmetry of the

vacuum. The inter-strings extending over two D-strings contain tachyonic modes so that

those D-strings tend to rearrange themselves reducing their energy [1]. (See also refs. [2]

and [3] for the argument in the T-dual setup.) Two static D-strings can preserve 16

supersymmetries only when they are parallel.

Static higher dimensional D-branes keep partial supersymmetries even when they are

not parallel. For example, two D2-branes, intersecting at angles, π − φ1 and π − φ2,

in the planes (x1, x2)- and (x3, x4)-planes respectively, preserve 8 supersymmetries when

φ1 + φ2 = 0. In the case of two D3- or higher branes, we have more possibilities of

supersymmetric configurations. They are T-dual to various BPS bound states of D0-

D(2k) with an appropriate arrangement of Born-Infeld (BI) fields over the world-volumes

of D(2k)-branes [4, 5].

One way of giving supersymmetries to two intersecting D-strings is to make them

dynamical so that the intersection point move at the light speed [6 – 8]. (The resulting
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configuration is thus called ‘null scissors’.) Another non-trivial example of dynamical but

supersymmetric configuration of D-strings is the D-helix configuration (a coil made of a

D-string) [9]. D-helix keeps 8 supersymmetries when it is in motion on its axis at the light

speed. Without this null motion, the nontrivial helical profile cannot sustain the tension

of the D-string [10]. D-helix is T-dual to a supertube, a tubular configuration of a static

D2-brane with appropriate BI fields over its world-volume [11].

In this paper, we find various new configurations of D-branes (and of their T- or S-dual

cousins) preserving 8 supersymmetries. In particular, we obtain a planar configuration of

various static (p, q)-strings intersecting at generic angles, nevertheless preserving 8 super-

symmetries. We call it super (p, q)-Jackstraws. The way they preserve supersymmetries

despite their generic posing angles is to tune their charges (NS-NS charge, p, and R-R

charge, q) according to their posing angles. On the contrary, the posing angle of a given

additional (p, q)-string is determined by the very element of SO(2) subgroup of SL(2, R)

(the group of classical S-dual transformations in type IIB theory [12]), that gives the specific

charge, acting on a reference D-string.

We start from generalizing the null scissors by arranging additional moving D-strings

without breaking supersymmetry. This exactly amounts to playing the old game ‘Jack-

straws’ in reverse order. We find the supersymmetry condition on the tilting angles and

the rapidities of D-strings by checking the compatibility among the supercharges preserved

by each of D-strings. In the resulting dynamical, but supersymmetric configuration, D-

strings are posed so that all their intersection points follow parallel null lines in arbitrary

dimensions. Therefore we call the specific configuration super D-Jackstraws. Various com-

binations of T-duality transformations results in other interesting supersymmetric config-

urations of D-branes. These include super waterwheels (D2-branes intersecting at generic

angles on the wheel axis with BI fields on their world-volumes) and super (p, q)-Jackstraws.

To be more specific about SO(2) transformation, let us look back on the role of

SL(2, R) on the solution of IIB supergravity. Type IIB theory is self-dual under S-dual

transformation. At low energy, the transformations are realized as SL(2, R) acting on the

doublet (H(3), F (3)) composed of NS-NS 3-form and R-R 3-form field strengths, and on

the complex scalar field τ = χ + ie−φ composed of R-R 0-form, χ, and NS-NS 0-form field,

φ, in the fashion à la Möbius transformation on a Rieman surface [12]. In general, the

transformation mixes NS-NS-charge and R-R-charge to produce (p, q)-strings.

The vacuum of IIB theory is characterized by the asymptotic value τ0 = χ0 + ie−φ0 of

the scalar fields, and SL(2, R) transforms those vacuum moduli to one another. Especially

under the subgroup SO(2) of S-dual transformation group, the specific vacuum with χ0 =

φ0 = 0 is a fixed point, that is to say, the asymptotic value, τ0 = i, is invariant. Hence,

given a supergravity solution constructed on this particular vacuum, we get another by

acting an element of SO(2) subgroup. For example, from a supergravity solution of a stack

of D-strings, say a (0, q)-string, we draw the solution of a (p′, q′)-string with the same

value of τ0 = i, just by acting an appropriate element of SO(2);

(

p′

q′

)

=

(

cos θ − sin θ

sin θ cos θ

)(

0

q

)

=

(

−q sin θ

q cos θ

)

. (1.1)
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Figure 1: A static configuration of (p, q)-strings preserving 8 supersymmetries. The tilting angle

of each string is determined by its carrying charge (p, q). Different colors denote different (p, q)

charges.

We claim that if we pose a (p′, q′)-string and a (0, q)-string so that they intersect at

the very angle θ in the above, then 8 supersymmetries will be preserved. The same is

true even when we add more (p(a), q(a))-strings (a = 1, 2, . . .) as long as they compose

a planar configuration making angles tan θ(a) = −p(a)/q(a) with respect to the referential

(0, q)-string.

This paper is organized as follows. As a preliminary to the main topic, we review

in section 2 that a D-string with BI electric field on its world-sheet is nothing but BPS

composite state of p fundamental strings and a D-string. We postpone the details about the

basic tool we adopt for the supersymmetry analysis, to appendix A. There, we focus on two

intersecting D-strings and explain the supersymmetry condition in our context. We obtain

in section 3 the condition for two moving D-strings intersecting at a generic angle to preserve

supersymmetries. We show how the supersymmetric null scissors appear in the present

context. In section 4, we extend the analysis to the cases of three D-strings in motion on

a plane. In section 5, we show that two D-strings moving in two different planes that are

non-intersecting cannot preserve any supersymmetry. Section 6 is devoted to the case of

three moving D-strings which are not necessarily in a plane. We show that they preserve 8

supersymmetries when all the intersections follow null lines in parallel. This result is valid

irrespective of the number of D-strings. In section 7, by taking T-duality on the super D-

Jackstraws, we obtain super waterwheels configuration. In order to keep supersymmetries,

there should be the critical valued BI electric field (along the common direction) on each

D2-brane. In section 8, taking sequential T-dualities on a specific configuration of super

D-Jackstraws, we arrive at a planar supersymmetric configuration of static (p, q)-strings

intersecting at generic angles, that is, super (p, q)-Jackstraws. Section 9 concludes the

paper with some discussions on the properties of the super Jackstraws.

2. Gauged D-strings as a (p, q)-string

A D-string with the electric field on its world-volume can be considered as a (p, 1)-string,
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i.e., the composite of p fundamental strings and a single D-string [13]. In fact, from Born-

Infeld Lagrangian of a D-string (compactified on a circle of radius l),

L = − l

λ

√

1 − E2 = − l

λ

√

l2

l2 + λ2Π2
, (2.1)

with

Π =
∂L
∂Ȧ

= − lE

λ
√

1 − E2
, (2.2)

one can derive

H = ΠȦ − L =

√

l2

λ2
+ Π2 = l

√

1

λ2
+ p2. (2.3)

Here we set the string tension 1/2πα′ = 1 and used the quantization of the momentum

Π = −p l with p ∈ Z. The parameter λ represents the string coupling eφ0 . The field

E is the component F01 of the gauge invariant two-form, F (2) = dA(1) − B(2), that is,

a combination of the U(1) gauge field strength dA(1) on the D-string worldvolume and

NS-NS bulk field B(2) pulled back onto the same world volume. When p = 0, the tension

becomes that of a D-string; H/l = 1/λ. Meanwhile, in the strong coupling limit of λ → ∞,

it becomes that of a fundamental string.

The way to see that the gauged D-string carries NS-NS charge is to vary the super-

gravity action with respect to the field B(2) [14]:

I = −
∫

d10x
√
−G

1

2λ2
|dB(2)|2 − 1

λ

∫

d2x
√

1 − E2. (2.4)

Since F (2) = dA(1) − B(2), we will get a source term in the equation of motion for NS-NS

three-form H(3) = dB(2). Therefore the tension (2.3) of the gauged string is nothing but

that of a (p, 1)-string. By superposing q̄ BPS (p, 1)-strings, so that p̄ = q̄ p, we obtain a

more generic (p̄, q̄)-string.

3. Intersecting D-strings in motion

In this section, we obtain the condition of preserving supersymmetries for two intersecting

D-strings. The basic tool used for the supersymmetry analysis is explained in appendix A.

Let us arrange two D-strings so that they are tilted at angle θ1,2 with respect to x1-axis and

are moving transversely with the rapidity γ1,2 respectively. The supercharge concerning

each D-string is of the form

Q + β2
aβ⊥

2 Q̃, β2
a = ρ(−θa)ρ(−γa)β

2ρ(γa)ρ(θa), (a = 1, 2). (3.1)

Figure 1 shows the configuration. The spinor states invariant under both super charges are
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16 component spinors ǫ satisfying the compatibility condition

(β2
1)−1β2

2 ǫ = ρ(−θ1)ρ(−γ2)(−1)β2ρ(γ1)ρ(θ1)ρ(−θ2)ρ(−γ2)β
2ρ(γ2)ρ(θ2)ǫ

=
(

− sinh γ1Γ
0 − sin θ1 cosh γ1Γ

1 + cos θ1 cosh γ1Γ
2
)

·
(

− sinh γ2Γ
0 − sin θ2 cosh γ2Γ

1 + cos θ2 cosh γ2Γ
2
)

= [1 (cos (θ1 − θ2) cosh γ1 cosh γ2 − sinh γ1 sinh γ2)

+ Γ01 (sin θ2 sinh γ1 cosh γ2 − sin θ1 cosh γ1 sinh γ2)

+ Γ02 (cos θ1 cosh γ1 sinh γ2 − cos θ2 sinh γ1 cosh γ2)

−Γ12 sin (θ1 − θ2) cosh γ1 cosh γ2

]

ǫ = ǫ. (3.2)

Since the eigenoperator and the operators S0 and S1 do not commute,1 the eigenvector

(here, the spinor ǫ) must be some combination of the above basis elements. Let

ǫ = a|1, 1, 2s2, 2s3, 2s4 > +b|1, −1, 2s2, 2s3, 2s4 >

+c| − 1, 1, 2s2, 2s3, 2s4 > +d| − 1, −1, 2s2, 2s3, 2s4 >

≡ (a, b, c, d), (3.3)

in terms of which the eigenvalue equation can be rewritten as

(cos (θ1 − θ2) cosh γ1 cosh γ2 − sinh γ1 sinh γ2 − 1) (a, b, c, d)

+ (sin θ2 sinh γ1 cosh γ2 − sin θ1 cosh γ1 sinh γ2) (d, c, b, a)

−i (cos θ1 cosh γ1 sinh γ2 − cos θ2 sinh γ1 cosh γ2) (d, −c, b, −a)

−i sin (θ1 − θ2) cosh γ1 cosh γ2(a, −b, c, −d) = 0.

(3.4)

Nontrivial spinors exist only when the characteristic equation is satisfied;

cos (θ1 − θ2) cosh γ1 cosh γ2 − sinh γ1 sinh γ2 = 1 (3.5)

Then a and d are related and so are b and c, whence 8 independent spinors satisfy the

above Killing spinor equation.

The geometric meaning of the above condition is that the intersection point of two

moving D-strings moves at the light speed. This can be seen from figure 3 easily, which

depicts the profiles of two D-strings tilted at angle θ1 and θ2 and moving with the speed

tanh γ1 and tanh γ2 respectively. During time δt, the intersection point follows the dotted

line, whose distance l is

l =
(

(l2 − l1)
2 + (δt tanh γ2)

2
)

1

2

=

(

tanh2 γ1 + tanh2 γ2 − 2 cos (θ2 − θ1) tanh γ1 tanh γ2

sin2 (θ2 − θ1)

)

1

2

δt

= δt. (3.6)

In the second line, l1 sin (θ2 − θ1) = δt tanh γ1 and l2 tan (θ2 − θ1) = δt tanh γ2 were used,

while in the last line, the above consistency condition (3.5) was used.

1These are defined in the appendix.
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Figure 2: Two intersecting D-strings (bold solid arrows) intersecting at an angle (θ2 − θ1) and

boosted with the rapidity γ1 and γ2

4. Three D-strings

Let us extend the previous argument on the supersymmetric configuration of two D-strings

to the case of three D-strings. In addition to the previous two D-strings, we arrange one

more static D-string along x1-axis (with its tilting angle and rapidity vanishing). The

compatibility conditions for the supercharges concerning each D-string are

cos (θ1 − θ2) cosh γ1 cosh γ2 − sinh γ1 sinh γ2 = 1 (between string 1 and 2)

cos θ1 cosh γ1 = 1 (between string 1 and 3)

cos θ2 cosh γ2 = 1 (between string 2 and 3)

(4.1)

We first note that the angles are restricted to the range

−π

2
< θ1, θ2 <

π

2
(4.2)

in order to make sense of the above equations. This means that the intersecting angle of

any two D-strings should be less than π/2. Another thing clear from the equations is that

the intersecting angle vanishes if and only if the rapidity difference vanishes.

The above three conditions are not fully independent. In fact, from the second and

the third equations, one can derive sin θi cosh γi = ± sinh γi (i = 1, 2). If the relation is

the same (either with ‘+’ or ‘−’) for both D-strings, the first equation is automatically

satisfied. This is when the intersecting point of the first and the third string and that

of the second and the third string moves at the light speed in the same direction along
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Figure 3: The profile made by two D-strings during time δt.

the third string.2 In the conventional representation discussed above, these compatibility

conditions result in the same relations among the coefficients as a = d and b = c, therefore

ensure 8 supercharges. Hence we will have a 1/4 supersymmetry for the generic case of

three moving D-strings if their intersecting points form a triangle moving at the light speed

without deforming its shape and size. Figure 4 shows the situation.

One might think of adding more D-strings to make general polygon shaped configu-

rations. These additional D-strings will not perturb the supersymmetry as long as their

corresponding compatibility conditions cos θi cos γi = 1 are satisfied. For k D-strings,

k − 1 compatibility conditions are enough to show that the rest compatibility conditions

are redundant. All these compatibility conditions result in the same relations among the

coefficients (as a = d and b = c), therefore ensure 1/4 supersymmentry always.

5. Two D-strings moving in different planes

Let the first D-string be tilted at angle θ1 and moving with rapidity γ1 in (x1, x2)-plane

and the second D-string be tilted at angle θ2 and moving with rapidity γ2 in (x3, x4)-plane.

The supercharges concerned with these strings are

Q + β′2β3β4β⊥
4 Q̃, Q + β′4β1β2β⊥

4 Q̃ (5.1)

2Actually this is not that simple. Given two solutions ǫ1 and ǫ2 satisfying Oiǫi = ǫi respectively for

i = 1, 2, it is never trivial to find the solution ǫ satisfying O
−1

1
O2ǫ = ǫ. For the cases at hand, ǫ1 = ǫ2,

thus they are equal to ǫ only when two D-strings move so that their intersection points with the the third

D-string are moving in the same direction at the light speed.
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Figure 4: A supersymmetric triangle configuration.

respectively. There,

β′2 = ρ(−θ1)ρ(−γ1)β
2ρ(γ1)ρ(θ1), β′4 = ρ(−θ2)ρ(−γ2)β

4ρ(γ2)ρ(θ2) (5.2)

with

ρ(θ1) = eΓ12θ1 , ρ(γ1) = eΓ02γ1 ,

ρ(θ2) = eΓ34θ2 , ρ(γ2) = eΓ04γ2 . (5.3)

The number of supercharges compatible with both D-strings is the number of the eigen

spinors satisfying

[

(β4)−1(β3)−1ρ(−θ1)ρ(−γ1)(β
2)−1ρ(γ1)ρ(θ1)ρ(−θ2)ρ(−γ2)β

4ρ(γ2)ρ(θ2)β
1β2
]

ǫ

=
(

−Γ0 sinh γ1 − Γ1 sin θ1 cosh γ1 + Γ2 cos θ1 cosh γ1

)

Γ12

·
(

Γ0 sinh γ2 − Γ3 sin θ2 cosh γ2 + Γ4 cos θ2 cosh γ2

)

Γ34ǫ

= ǫ (5.4)

In s-representation,

ǫ = a+|+, +, +, s3, s4 > +b+|+,−, +, s3, s4 >

+c+|−, +, +, s3, s4 > +d+|−,−, +, s3, s4 >

+a−|+, +,−, s3, s4 > +b−|+,−,−, s3, s4 >

+c−|−, +,−, s3, s4 > +d−|−,−,−, s3, s4 >

≡ (a+, b+, c+, d+; a−, b−, c−, d−), (5.5)
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we note that

Γ1234ǫ = (−a+, b+,−c+, d+; a−,−b−, c−,−d−),

Γ0124ǫ = (−c−,−d−,−a−,−b−; c+, d+, a+, b+),

Γ0123ǫ = −i(c−, d−, a−, b−; c+, d+, a+, b+),

Γ0234ǫ = (d+,−c+, b+,−a+;−d−, c−,−b−, a−),

Γ0134ǫ = i(d+, c+, b+, a+;−d−,−c−,−b−,−a−),

Γ24ǫ = (−b−,−a−,−d−,−c−; b+, a+, d+, c+),

Γ23ǫ = −i(b−, a−, d−, c−; b+, a+, d+, c+),

Γ14ǫ = i(−b−, a−,−d−, c−; b+,−a+, d+,−c+),

Γ13ǫ = (b−,−a−, d−,−c−; b+,−a+, d+,−c+). (5.6)

With the insertion of these results, the eigen spinor equation (5.4) has nontrivial solutions

only if its characteristic equation vanishes, that is, 4 cosh2 γ1 cosh2 γ2 = 0, but this is

impossible. Hence there is no supersymmetry preserved in the configuration of two D-

strings moving in different planes which are not intersecting.

For lateral use, we add a few more computational results of gamma matrices acting

the spinors;

Γ01ǫ = (d+, c+, b+, a+; d−, c−, b−, a−),

Γ02ǫ = i(−d+, c+,−b+, a+;−d−, c−,−b−, a−),

Γ03ǫ = (−c−, d−,−a−, b−;−c+, d+,−a+, b+),

Γ12ǫ = i(a+,−b+, c+,−d+; a−,−b−, c−,−d−),

Γ34ǫ = i(a+, b+, c+, d+;−a−,−b−,−c−,−d−). (5.7)

6. Supersymmetric D-jackstraws

Let us generalize the scissors configuration to higher dimensions. We consider three D-

strings each of which are moving but not necessarily in the same plane. Let the first

D-string be tilted at angle θ1 and move in (x1, x2)-plane and with a rapidity γ1. The

second D-string is tilted at an angle θ2 and is moving in (x2, x3)-plane with a rapidity γ2.

We align one D-string along x2-direction. See figure 5 for the configuration.

The supercharges concerning each of these D-strings are

Q + β′2β3β⊥
3 Q̃, Q + β′3β1β⊥

3 Q̃, Q + β3β1β⊥
3 Q̃ (6.1)

respectively. The number of supercharges compatible with the whole configuration is the

number of spinors ǫ satisfying

(

β1
)−1

β′2ǫ = Γ12ρ(θ1)ρ(2γ1)ρ(θ1)ǫ (6.2)

=
[

cosh γ1

(

Γ12 cos θ1 − sin θ1

)

+ Γ01 sinh γ1

]

ǫ = −ǫ,
(

β3
)−1

β′3ǫ = ρ(θ2)ρ(2γ2)ρ(θ2)ǫ =
[

cosh γ2

(

cos θ2 + Γ23 sin θ2

)

+ Γ03 sinh γ2

]

ǫ = ǫ,
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Figure 5: A non-planar array of three intersecting D-strings: The first D-string is moving in

(x3, x1)-plane while the second one is moving in (x2, x3)-plane. The third D-string is along x2-axis.

where β′2 = ρ(−θ1)ρ(−γ1)β
2ρ(γ1)ρ(θ1) and β′3 = ρ(−θ2)ρ(−γ2)β

3ρ(γ2)ρ(θ2). These equa-

tions are the compatibility condition between the first and the third, and between the

second and the third D-string respectively.

In s-representation discussed in the previous sections, the explicit form of the condi-

tions (6.2) are

(sin θ1 cosh γ1 − 1) (a+, b+, c+, d+; a−, b−, c−, d−)

−i cos θ1 cosh γ1(a+,−b+, c+,−d+; a−,−b−, c−,−d−)

− sinh γ1(d+, c+, b+, a+; d−, c−, b−, a−) = 0,

(cos θ2 cosh γ2 − 1) (a+, b+, c+, d+; a−, b−, c−, d−)

−i sin θ2 cosh γ2(b−, a−, d−, c−; b+, a+, d+, c+)

+ sinh γ2(−c−, d−,−a−, b−;−c+, d+,−a+, b+) = 0.

(6.3)

These two equations have nontrivial solutions if their characteristic equations are satisfied;

sin θ1 cosh γ1 − 1 = 0, cos θ2 cosh γ2 − 1 = 0. (6.4)

These conditions imply that 0 < θ1 < π and −π/2 < θ2 < π/2, therefore the intersecting

angle with the third D-string lying along x2-direction should be less than π/2. The con-

ditions do not constrain the motion of two D-strings completely and there are ambiguities

in their moving directions as cos θ1 = p tanh γ1 and sin θ2 = q tanh γ2 with p2 = q2 = 1.

With either sign of p and q, two D-strings slide over the third static D-string at the light

speed. However, in order for these two D-strings to be compatible with each other pre-

serving supersymmetries, the ambiguities p and q should be further constrained so that

p q < 0. This is when their intersection points (with the third D-string) move in the same

direction along the third D-string. For example let 0 < θ1,2 < π/2. Then cos θ1 = tanh γ1

– 10 –
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Figure 6: A configuration of three intersecting D-strings. The first is moving in (x′1, x2)-plane

while the second one is moving in (x2, x3)-plane. The third D-string is along x2-axis.

with γ1 > 0 and sin θ2 = − tanh γ2 with γ2 < 0 and the above two equations consistently

result in the relations among the coefficients;

ia± = −d±, ib± = c± (6.5)

leaving 8 supersymmetries.

One can consider more general situation where the first D-string moves in (x′1, x2)-

plane where (x′3, x′1)-axes are rotated counterclockwise by an angle φ with respect to

(x3, x1)-axes. Therefore the first and the second D-strings are moving in two planes which

are intersecting at an angle π/2 − φ. Figure 6 exhibits the configuration.

One can make an educated guess that this new configuration, interpolating the the

previous one and the triangular one, will preserve 8-supercharges too. This is indeed the

case. The difference caused by this change appears in the supercharge concerning the first

D-string so that the first equation of (6.1) becomes

Q + ρ(φ)β′2β3ρ(−φ)β⊥
3 Q̃, (6.6)

where ρ(φ) = cos (φ/2) + Γ31 sin (φ/2). The story goes in the same way as in the previous

case and the first compatibility condition of Eq (6.2) is changed to

(

β3
)−1 (

β1
)−1

ρ(φ)β′2β3ρ(−φ)ǫ =
[

cos φ
(

cos θ1 cosh γ1 + Γ02 sinh γ1

)

+ Γ12 sin θ1 cosh γ1

−Γ31 sinφ
(

cos θ1 cosh γ1 + Γ02 sinh γ1

)]

ǫ

= ǫ. (6.7)
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Figure 7: The left figure shows a supersymmetric arrangement of moving D-strings (that looks

like Jackstraws). All the D-strings are moving in such a way that all the intersection points move

in one direction at the light speed keeping their relative positions. The right figure: With all the

intersection points coincident, the configuration becomes a super null hedgehog.

In s-representation, this condition is specified as

(sin θ1 cosh γ1 − 1) (a+, b+, c+, d+; a−, b−, c−, d−)

−i cos φ cos θ1 cosh γ1(a+,−b+, c+,−d+; a−,−b−, c−,−d−)

− cos φ sinh γ1(d+, c+, b+, a+; d−, c−, b−, a−
+i sinφ cos θ1 cosh γ1(b−, a−, d−, c−; b+, a+, d+, c+)

+ sinφ sinh γ1(−c−, d−,−a−, b−;−c+, d+,−a+, b+) = 0.

(6.8)

In order for this equation to have non-trivial solutions for the coefficients, the following

characteristic equation should be satisfied;

(2 − 2 sin θ1 cosh γ1)
2 = 0. (6.9)

Since this equation is independent of the angle φ and the new condition (6.8) gives then the

same relations as (6.5), we conclude that this more generic case of three moving D-strings

preserves 8 supercharges.

Summing up all the results so far, we can say that an arbitrary number of D-strings,

intersecting at an arbitrary angle less than π with one another and moving at an ar-

bitrary rapidity, preserve a quarter supersymmetry so long as the spatial trajectories of

D-strings have one common direction and all the intersection points are moving at the

light speed without deforming their relative configuration. See figure 7 for an example of

supersymmetric network of moving D-strings in 3-dimensions. If all the intersection points

of D-strings coincide, the whole configuration will compose a null hedgehog that preserves

8 supercharges.

7. Super waterwheels

Now let us take T-duality on the super hedgehog solutions which have been discussed so

far. Instead of dealing with the whole configuration, we first focus on one D-string and see
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the effect of T-duality on it. Let the D-string lie in the (x1, x2)-plane, be tilted at an angle

θ with respect to x1-axis, and be boosted at a rapidity γ. The boundary conditions for the

open string ending on the D-string are

∂σx0| cosh γ + ∂σx1 sin θ sinh γ − ∂σx2| cos θ sinh γ = 0

∂σx1| cos θ + ∂σx2| sin θ = 0

−∂τx
0| sinh γ − ∂τx

1| sin θ cosh γ + ∂τx
2| cos θ cosh γ = 0. (7.1)

where the vertical bar ‘|’ is short for ‘|σ=0,π’ that means the quantity in front of this

bar measured at the world-sheet boundary σ = 0, π. Taking T-duality along x2-axis inter-

changes the term ∂σx2 with ∂τx
2 in the boundary conditions and vice versa. The boundary

conditions of the string living on T-dualized configuration are

∂σx0| cosh γ + ∂σx1 sin θ sinh γ − ∂τx
2| cos θ sinh γ = 0

∂σx1| cos θ + ∂τx
2| sin θ = 0

−∂τx
0| sinh γ − ∂τx

1| sin θ cosh γ + ∂σx2| cos θ cosh γ = 0. (7.2)

Comparing these conditions with that of a string coupled to the background antisym-

metric field Fµν

(Gµν∂σxν −Fµν∂τx
ν) |σ=0,π = 0 (7.3)

we note that the string lives on a D2-brane containing background fields over its world

volume as

F02 = −tanh γ

cos θ
, F12 = − tan θ. (7.4)

Now we consider N D-strings, each of which is moving in (xµa , x2)-plane at a rapidity

γa, being tilted at an angle θa with respect to xµa-axis. Here a = 1, 2, . . . , N − 1 and they

need not orthogonal to one another. Without loss of generality, we let the last D-string

lie along x2-axis without moving. Taking T-duality along x2-axis results in a complex of

N − 1 D2-branes, each of which is extending in (xµa , x2)-plane and contains the electric

field and the magnetic field as

F (a)
02 = −tanh γa

cos θa
, F (a)

µa2 = − tan θa, (7.5)

and an array of D0-branes smeared over x2-axis. If we start with a supersymmetric null

hedgehog solution so that the parameters θa and γa satisfy the conditions

sin θa cosh γa − 1 = 0, (a = 1, 2, . . . , N − 1), (7.6)

all the electric fields become ‘critical’, i.e., E ≡ F (a)
20 = ±1. From here on, we choose it as

E = 1, to simplify the argument. Figure 8 shows the resulting configuration.

Especially had we allowed the momentum flow on the last D-string so that it make

a super D-helix, the type IIA configuration obtained via T-duality would have been a

supertube with N − 1 wings. It is surprising to see that the whole configuration preserves

8-supercharges regardless of the intersecting angles among the wings.
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Figure 8: A supersymmetric threshold bound state of intersecting D2-branes and an array of D0-

branes (white dots) smeared over x2-axis. Only two spatial directions transverse to the D0 array

are shown with other directions omitted.

8. Supersymmetric (p, q)-jackstraws

In this section, we display a planar configuration composed of (p, q)-strings preserving 8

supersymmetries. We start with a D2-brane with Born-Infeld fields,

F02 = −tanh γ

cos θ
, F12 = − tan θ. (8.1)

By taking T-duality along x1-direction, we get a D-string tilted at an angle θ with respect

to x2-axis and with Born-Infeld electric field along its volume. This can be easily seen from

the corresponding boundary conditions of the open string living on the D-string. T-duality

along x1-axis results in the change ∂τx
1 ↔ ∂σx1 in the boundary condition (7.2), so leads

to

∂σx0| cosh γ + ∂τx
1 sin θ sinh γ − ∂τx

2| cos θ sinh γ = 0,

∂τx
1| cos θ + ∂τx

2| sin θ = 0,

−∂τx
0| sinh γ − ∂σx1| sin θ cosh γ + ∂σx2| cos θ cosh γ = 0. (8.2)

Introducing new coordinates x̄0 = x0, x̄1 = x1 cos θ + x2 sin θ and x̄2 = x2 cos θ − x1 sin θ,

that is, the coordinates rotated counterclockwise by an angle θ with respect to the original

coordinates {x0,1,2}, we can write the boundary conditions as

∂σx̄0| cosh γ − ∂τ x̄
2| sinh γ = 0,

∂τ x̄
1| = 0,

−∂τ x̄
0| sinh γ + ∂σx̄2| cosh γ = 0. (8.3)

Hence x̄1 is one of Dirichlet directions and the D-string extends to the direction x̄2 with

Born-Infeld electric field

F0̄2̄ = − tanh γ. (8.4)
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Note that the direction x̄2 is rotated counterclockwise by an angle θ with respect to x2-axis.

Had we started with N D2-branes superposed but with different Born-Infeld fields as

F (a)
02 = − tanh γ(a)/ cos θ(a) and F (a)

12 = − tan θ(a) (a = 1, 2, . . . , N), we would have got N

D-strings, each of which is tilted at an angle θ(a) with respect to x2-axis and has Born-Infeld

electric field of magnitude F (a)

0̄2̄
= − tanh γ(a) along its direction.

Especially when all the conditions sin θ(a) cosh γ(a) = 1 are satisfied, the whole planar

configuration of static gauged D-strings preserves 8 supercharges. In the case, the tilting

angles θ(a) of the gauged D-strings are correlated with the magnitude of BI fields on their

world volumes:

E(a) = −F (a)

0̄2̄
= tanh γ(a) = cos θ(a). (8.5)

This implies that, in order not to break any supersymmetry, we pose a (p(a), 1)-string with

p(a) =
E(a)

λ
√

1 − E2
(a)

=
1

λ
cot θ(a) (8.6)

at the angle θ(a) (counted counterclockwise from x2-axis).

In general, the angular position of a specific (p̄, q̄)-string, in the planar configuration

of Jackstraws, is determined by its charge ratio as

q̄

p̄
= λ tan θ. (8.7)

This is based the fact that multiple (p(a), 1)-strings can be posed in parallel or be super-

posed on top of each other without breaking any supersymmetry. The angular position

of a (n p(a), n)-string, i.e., n multiples of a (p(a), 1)-string, is independent of n. A special

orthogonally intersecting case of a D-string and a F-string was discussed in the name of

‘super cross’ in ref. [15].

The formula (8.7) is reminiscent of the S-dual transformation that leads to a (p̄, q̄)-

string, being acted on a (1, 0)-string. Indeed the angle coincides with that appearing in

SO(2) subgroup of SL(2, R), the group of S-dual transformations. We first note that the

angle θ was measured counterclockwise from x2-axis, that is, the direction of a (∞, 1)-

string or nearly that of a (1, 0)-string. In the absence of the R-R scalar field concerning

D-instanton, the required S-dual transformation is the form,

1
√

p̄2 + q̄2

(

p̄

q̄

)

λ

=

(

1/
√

λ 0

0
√

λ

)(

cos θ − sin θ

sin θ cos θ

)(

1

0

)

1

. (8.8)

The first factor on the right hand side concerns the non-trivial string coupling, λ, and the

next factor transforms the charge (1, 0)1 to (cos θ, sin θ)1. The subscript in each charge

doublet denotes the value of the string coupling constant characterizing the vacuum. We

introduced the factor
√

p̄2 + q̄2 to account for the integer values, p̄ and q̄. See ref. [12] for

details.

One need not refer to a fundamental string, or x2-axis, as the only angle basis to use

in making the super Jackstraws. One can easily change the reference string to another
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Figure 9: T-duality relates a planar null super D-hedgehog (on the left) with a planar static super

(p, q)-hedgehog (on the right). The whole configuration is rotated by π/2 with respect to each

other. Supersymmetry condition relates the rapidity and the tilting angle from x1-axis (in the left

figure) or BI electric field and the tilting angle from x2 axis (in the right figure) as tanh γ = cos θ.

(a (p, q)-string for example) by making use of the above relation (8.8). Conclusively to

say, the way to win the super (p, q)-Jackstraws game is as follows: When we are given

(p, q)-string and want to pose a (p′, q′)-string without breaking supersymmetry, we tune

the intersecting angle θ so that

1
√

p′2 + q′2

(

p′

q′

)

λ

=
1

√

p2 + q2

(

cos θ −λ−1 sin θ

λ sin θ cos θ

)(

p

q

)

λ

. (8.9)

These (p, q)-Jackstraws are related to the planar dynamic D-Jackstraws via T-dualities.

Figure 9 illustrates the situation.

9. Discussions

So far, we have considered various new configurations of D-branes preserving 8 supersym-

metries. We conclude the paper with some remarks on the properties of those configura-

tions.

The intersecting angles among variously charged (p, q)-strings should be discrete at

the quantum level. The classical S-duality group SL(2, R) becomes SL(2, Z) beyond the

tree level. Basically this is due to the generalized Dirac quantization conditions valid in

the presence of the magnetic dual partners of F-strings and D-strings, i.e., NS5-branes and

D5-branes respectively. The angle in (8.7) is constraint by the discrete values of p and q.

Another interesting thing is that the angle depends on the string coupling constant.

Given the charge pair (p, q), the corresponding string approaches to the reference x2-axis

in the strong coupling limit, while it approaches to D-strings extending to the negative

x1-direction in the weak coupling limit.
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Figure 10: Relation between super D-Jackstraws and the string network. (a) The intersection

point of two (p, q)-strings can be ‘regularized’ into two (p, q)-junctions. There are two possible

ways of the ‘regularization’. (b) The fundamental string mediates two string junctions. (c) The

intermediate D-strings (with (0, 2) charge) are supposed to be along the direction of the negative

x1-axis to keep the supersymmetry.

In the super D-helix configuration [9], one can understand its preserving 8 supersym-

metries in the differential view point. At every point along the helix, we consider the

tangent line, that is nothing but a moving D-string. For arbitrary set of the points on the

helix, the tangential D-strings form super D-Jackstraws. In the same vein, the D2-branes

composing super waterwheels can be understood as the tangential planes to the supertubes.

This view point is consistent with the arbitrary shape of the super D-helix [10, 16] or of

the supertube [17 – 19]. In the super D-Jackstraws, we are free to move each constituent

D-string as long as we keep its pointing direction. Therefore for a super D-helix of arbi-

trary shape, the tangential D-strings compose super D-Jackstraws. The same is true for

the tangential D2-branes of a supertube of generic shape.

The supersymmetry ensures the stability of the corresponding configuration. Let us

consider the ‘joining and splitting interaction’ in the ordinary intersecting D-strings. Unless

two D-strings are in parallel, the joining and splitting procedure renders the configuration

unstable. (See ref. [1] for details.) However, this interaction cannot happen in the inter-

section of two different (p, q)-strings because it will violate the charge conservation. In

the spectrum of open strings extending over two different (p, q)-strings, there will be no

tachyonic mode as long as (p, q)-strings tune their intersecting angle in the supersymmetric

manner discussed so far. Actually the supersymmetry could give some new ingredients to D-

, F-, or (p, q)-strings which are considered recently as the candidate cosmic strings [20, 21].

(See also ref. [22] and references therein.)

In type IIB theory, there is another well-known configuration of (p, q)-strings; that is,

the string network [23, 24]. Since this configuration also preserves 8 supersymmetries, one

could conceive of its relation with the super D-Jackstraws. Each intersection point in the

super (p, q)-Jackstraws can be ‘regularized’ into two (p, q)-junctions. See figure 10 for the

schematic view.
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A. Static Intersecting D-strings

A.1 Supercharges in the presence of D-branes

The purpose of this section is to explain our tool used for the supersymmetry analysis

throughout this paper. The supersymmetry preserved by a single Dp-brane is given by the

sum of the left- and right-movers on the string world sheet, Qα + (β⊥
p Q̃)α [1]. Here

β⊥
p =

9
∏

m=p+1

βm, (A.1)

and βm = ΓmΓ is the spacetime parity operator on the world sheet of the open string. The

chiral operator was denoted as Γ =
∏9

i=0 Γi.

As an application, let us consider a configuration of two static intersecting D-strings,

one of which is along x1-axis and the other is tilted at an angle θ with respect to the former

in (x1, x2)-plane. The supercharges preserved by each D-string will be

Qα + (β2β⊥
2 Q̃)α

Qα + (β′2β⊥
2 Q̃)α, β′2 = ρ(−θ)β2ρ(θ), (A.2)

where we used the spinor representation of the rotation transformation as ρ(θ) =

exp (θΓ12/2).

The number of supersymmetries preserved by these two D-strings is the number of the

spinor states invariant under the above two supercharge operators, that is, the number of

16-component chiral spinors, ǫ, satisfying

β−2β′2ǫ = ǫ. (A.3)

A.2 S-representation for the spinors

To be explicit about solving the above spinor equation, we adopt s-representation of the

spinors used in ref. [1]. Spinors, being in the representation space of Clifford algebra, can

be classified according to the eigenvalues of the following mutually commuting operators;

2S0 = Γ0Γ9, 2Sj = −iΓ2j−1Γ2j (j = 1, . . . 4). (A.4)

Since all the operators are squared to 1, they (2S0, 2Sj) have two eigenvalues, ±1. One

can construct the raising or the lowering operators for each eigen value;

Γ0± =
1

2

(

Γ0 ± Γ9
)

, Γj± =
1

2

(

Γ2j−1 ± iΓ2j
)

. (A.5)
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They indeed satisfy

[S0, Γ0±] = ±Γ0±, [Sj , Γj±] = ±Γj±. (A.6)

Starting from the ‘ground state’ |0 > defined by the condition that

Γ0−|0 >= Γj−|0 >= 0, (A.7)

one can construct 32-basis of the spinors by acting the raising operators Γ0+ and Γj+ on

the state |0 >. According to their eigenvalues 2s0 and 2sj for the operators 2S0 and 2Sj ,

we represent the basis as

|2s0, 2s1, 2s2, 2s3, 2s4 > . (A.8)

One thing to note is that it does not represent a ‘tensor’ constructed via direct product,

although all the operators (A.4) mutually commute. Each entry of the basis is in one

representation space of ten dimensional Clifford algebra. As a result, we have to keep track

of the overall sign carefully in the computation. For example, we will use the following

results quite often:

Γ0+| − 1, ±1, 2s2, 2s3, 2s4 >= |1, ±1, 2s2, 2s3, 2s4 >,

Γ1+| ± 1, −1, 2s2, 2s3, 2s4 >= | ± 1, 1, 2s2, 2s3, 2s4 > . (A.9)

A.3 Solving the eigen-spinor equation

Now we are ready to solve the eigenvalue equation (A.3). Let

ǫ = a|2s0, 1, 2s2, 2s3, 2s4 > +b|2s0, −1, 2s2, 2s3, 2s4 >

≡ (a, b), (A.10)

in terms of which the eigenvalue equation can be rewritten as

(cos θ − 1) (a, b) − i sin θ (a, −b) = 0. (A.11)

In each term of the expression (A.10), the entries satisfy the chirality condition, say
∏4

i=0(2si) = 1. The coefficients a, b can be complex, which does not double the num-

ber of Killing spinors because |2s0, 2s1, 2s2, 2s3, 2s4 > and i|2s0, 2s1, 2s2, 2s3, 2s4 > are

not independent.

Unless θ = 0, eq. (A.11) has no solution for a and b. When θ = 0, that is when two

D-strings are parallel, the equation is satisfied for arbitrary values of a and b, thus results

in 16 supersymmetries.
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Erratum

Eq. (8.8) should read as

1
√

p̄2λ + q̄2λ−1

(

p̄

q̄

)

λ

=

(

1/
√

λ 0

0
√

λ

)(

cos θ − sin θ

sin θ cos θ

)(

1

0

)

1

. (B.1)

According to this change, the following corrections should be understood. In the latter

part of the paragraph following Eq. (8.8),

“We introduced the factor
√

p̄2 + q̄2 to account. . . .” should read as “We introduced the

factor
√

p̄2λ + q̄2λ−1 to account. . . .”

Eq. (8.9) should read as
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